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Abstract:1

3D Understanding of the environment is critical for the robustness and perfor-2

mance of robot learning systems. As an example, 2D image-based policies can3

easily fail due to a slight change in camera viewpoints. However, when construct-4

ing a 3D representation, previous approaches often either sacrifice the rich seman-5

tic abilities of 2D models or settles for a slower update rate that hinders real-time6

robotic manipulation. In this work, we propose a 3D representation based on 3D7

Gaussians [1] that is both semantic and dynamic. With only a single or a few cam-8

era views, our proposed representation is able to capture a dynamic scene at 309

Hz in real-time in response to robot and object movements, which is sufficient for10

most manipulation tasks. Our key insight in achieving this fast update frequency is11

to make object-centric updates to the representation. Semantic information can be12

extracted at the initial step from pretrained foundation models, thus circumvent-13

ing the inference bottleneck of large models during policy rollouts. Leveraging14

our object-centric Gaussian representation, we demonstrate a straightforward yet15

effective way to achieve view-robustness for visuomotor policies. Our represen-16

tation also enables language-conditioned dynamic grasping, for which the robot17

perform geometric grasp of moving objects specified by open vocabulary queries.18

Please refer to https://object-aware-gaussian.github.io for more results.19
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Figure 1: Object-centric Gaussian splatting. We propose a dynamic and semantic 3D representation based
on Gaussian Splatting [1], which achieves an update rate of 30 Hz in response to robot and object movements.
We show the reconstruction from different viewpoints of a grasping scene on the left. We apply this represen-
tation to obtain behavior cloning policies that are robust under various testing views even though only a single
training view is available. We also apply our representation to enable zero-shot language-conditioned dynamic
grasping.

1 Introduction20

What representation of the scene will improve the performance and robustness of learning robots?21

Recent achievements in the community suggest that taking 2D RGB images as inputs allow robots to22
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perform complex manipulation tasks [2, 3]. Nevertheless, the hidden assumption is that the camera23

viewpoints remain the same for training and testing. As we will demonstrate in Sec. 4.1, even slight24

shift in camera views will significantly reduce the performance of learning agents. A fixed relative25

pose between the cameras and the robot base or the end-effectors is an unsatisfactory requirement.26

As humans, we can easily solve the same tasks without our eyes fixing at a position relative to our27

hands. We can even easily tele-operate a robot to complete the task at completely different views.28

Unfortunately, most of the existing learning agents lack the 3D understanding essential to robustness29

of the policies.30

There has been promising results on directly learning with 3D representations like voxels or point-31

clouds [4, 5], yet it would be optimal if learning agents can leverage immense 2D data and readily32

accessible pretrained vision foundation models [6, 7, 8, 9, 10]. Recent strides in integrating se-33

mantic information into neural 3D representations [11] have shown promise in enabling tasks like34

language-conditioned grasping [12, 13] and goal-conditioned rearrangement [14]. Yet, these ap-35

proaches stumble when faced with dynamic scenes and the requirement of higher-frequency (30Hz)36

controls, constraining their general applicability.37

The crux of the challenge lies in the resource-intensive demands of constructing semantic 3D38

representations which are already compute and memory-intensive for passive vision applications.39

Robotics adds an additional axis of time, requiring controllers at 10Hz frequency at least for practi-40

cal applications. The indispensable requirement for real-time updates of the dynamic world makes41

3D representation for robotics exponentially more demanding.42

However, a close examination of the robotic tasks reveals a potential solution. Changes within a43

scene between updates are predominantly localized, suggesting that a per-step scene reconstruc-44

tion may not only be inefficient but also unnecessary. By transitioning to a locally updatable scene45

representation, we can directly address the core of the computational challenge. This pivot from con-46

tinuous, global reconstruction towards targeted, localized updates dramatically curtails the overhead47

associated with keeping a semantic and dynamic 3D representation, where the main computation is48

completed at the initialization.49

Gaussian splatting [1] emerges as a promising candidate for dynamic 3D scene representation in this50

context. Originating from novel-view synthesis, this method employs a set of 3D Gaussian primi-51

tives to model a scene. This explicit and volumetric representation allows for local updates of the52

constructed scene. Further, its reliance on rasterization for rendering leverages parallel processing53

on GPUs, markedly accelerating rendering speeds. Nonetheless, adapting Gaussian splatting for54

robotics poses its own set of challenges. While it offers a speed advantage, it lacks the semantic un-55

derstanding of the scene, and vitally, it still falls short of meeting the real-time update requirements56

for robotics.57

In response to these challenges, our work builds upon static Gaussian splatting to bridge this gap. We58

address the need for speed and semantic interpretation by embedding “objectness” into the scene rep-59

resentation, thereby expediting the update process. This approach allows for rapid, high-frequency60

updates essential for dynamic robotic environments. This also allows a one-time extraction of 2D61

foundation models at the initial step for semantic information, circumventing the inference bottle-62

neck of large models.63

With our representation, we can robustify off-the-shelf 2D policy trainers to handle arbitrary camera64

poses by projecting observations to training views. Our semantic, dynamic, and 3D representation65

also allows a robot to reactively grasp moving objects prompted by open-vocabulary queries.66

In summary, our contributions are:67

1. Introducing the use of object-centric Gaussian splatting for dynamic, semantic, and 3D68

representation in robotics.69

2. Overcoming the update speed limitations of the vanilla Gaussian splatting through object-70

centric updates, achieving 30 Hz update rate which is sufficient for most real-time robotic71

applications.72

3. Proposing GSMimic, which utilizes our representation to obtain view-robust behavior73

cloning policies evaluated on simulation and real-world manipulation tasks.74

4. Demonstrate the representations applicability to zero-shot language-conditioned dynamic75

grasping, showcasing its adaptability in dynamic settings.76
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Figure 2: Method Overview. We obtain object-wise segmentation from 2D foundation models [8] at initial
reconstruction. In the following updates, objects displacements are optimized with photo-metric loss. We also
optimize for the displacements of individual Gaussians to account for non-rigid transformations like the closing
of the robot gripper.

2 Dynamic Object-centric Gaussians77

2.1 Preliminaries on Gaussian Splatting78

Our initial scene representation is constructed based on 3D Gaussian Splatting [1]. The scene is79

represented by a collection of 3D Gaussians, where the ith Gaussian is specified by a set of learning80

parameters: xi ∈ R3 is Gaussian center, Ri ∈ SO(3) the rotation, si ∈ R3 the scale, ci ∈ R3 the81

color, and αi ∈ R the opacity. The weight wi of each gi on a point p in 3D space is determined by82

the Gaussian distribution, adjusted by the opacity:83

wi(p) = σ(αi) exp

(
−1

2
(p− xi)

>Σ−1i (p− xi)

)
where σ(·) denotes the sigmoid function, and Σi is the covariance matrix, derived from its rotation84

and scale. To render an image Irender from a camera viewpoint, the 2D center of a Gaussian gi85

is projected onto the image plane using the camera matrices. The 2D weight w2D
i is similarly86

computed with the 2D center and the covariance. All the 2D centers are sorted then by depth in87

ascending order, and pixel color Irender[u, v] is accumulated:88

Irender[u, v] =
∑
i

ciw
2D
i (u, v)

i−1∏
j=1

(1− w2D
j (u, v))

Finally, given a ground-truth image I from the viewpoint, the Gaussian parameters can be optimized89

by minimizing a differentiable photometric loss that measures that distance between I and Irender.90

This optimization process is fully differentiable and designed for GPU-based parallel computation,91

ensuring rapid training.92

2.2 Problem Formulation and Initial Reconstruction93

We seek to construct a semantic and dynamic 3D representation St of the scene for each time step94

t given views from a few RGB-D cameras. For each camera labeled with c, we have the data95

tuple (Ic,t, Dc,t, Ec,t,Kc), where Ic,t is the RGB image, Dc,t is the depth image, Ec,t represents96

the time-dependent camera extrinsic, and Kc denotes the camera intrinsic. These cameras may be97

static, affixed to the robot or other moving objects. Our main challenge is to update the scene at a98

high frequency (30 Hz).99

Due to the requirement for update speed and limited camera views in robotic applications, relying100

solely on spatial information from the current time step is inadequate for accurate reconstruction.101
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Figure 3: Dynamic Segmentation. We show the segmentation map at different time steps and rendered at
different views.

Our proposed solution seeks not only to reconstruct the scene St using spatial information but also to102

enrich it with temporal information from previous time steps. This is achieved by auto-regressively103

reconstructing St from St−1, thereby implicitly utilizing information from all previous time steps.104

By doing this, the scene representation also naturally exhibits temporal continuity, possibly allowing105

the agent to capture and reflect changes over time. This also allows the computations, such as106

semantic extractions, at the initial time step to be carried over.107

We propose to use the 3D Gaussians [1] as our scene representation: St is represented by a set of 3D108

Gaussians, (xi,t,Ri, si, ci, αi), where the Gaussian centers are time-variant. At the initial time step,109

we initialize the scene with a dense point cloud obtained from the camera views. This ensures the110

initial reconstruction is regularized even though the views are few. We also obtain semantic features111

relevant to the task from 2D foundation models.112

Upon obtaining the initial scene S0, a naive approach for progressing to S1 involves using the spatial113

parameters of S0 as initial values for xi,1, and then updating these parameters with new observa-114

tions (Ic,1, Ec,1,Kc). This method, however, faces two primary issues: limited camera views at115

subsequent time steps can lead to overfitting, such as moving excess points from the background116

to incorrectly cover moving foreground objects; and the approach is too slow for the rapid updates117

required in robotics. To address these challenges, we introduce object-centric updates, as illustrated118

in Fig. 2.119

Incorporating objectness into the Gaussian scene representation is a pivotal aspect of our method.120

Besides reconstructing the geometric scene with 3D Gaussian Splatting, the initial step in our ap-121

proach also utilizes pretrained segmentation models to obtain instance segmentation of the scene.122

Specifically, we pick one camera view and its associated RGB image Ic, and obtain a segmenta-123

tion mask Mc. The segmentation labels are then lifted into 3D space through camera matrices and124

depth Dc, so that each point in the point-cloud extracted, Pc, has a corresponding segmentation125

label. Finally, the point clouds obtained from other views inherit their respective segmentation la-126

bels from their nearest neighbors in Pc. Thus, each 3D Gaussian is enhanced with a segmentation127

label k, gi = (xi,t,Ri, si, ci, αi, li), where li ∈ {1, . . . ,K} for K detected objects. We further128

label the background with li = 0. We visualize this initial segmentation on the left of Fig. 2, and129

this segmentation is carried on in the following dynamic updates, as shown in Fig. 3. In theory,130

many off-the-shelf segmenters is applicable for our purpose, but we obtain the segmentation map131

through GroundedSAM [8, 15, 16, 6, 9] with the language query “object”. In the following sections,132

we introduce how to use the segmentation information to rapidly update the scene given dynamic133

movements.134

2.3 Object-centric Updates135

Optimizing each individual Gaussians freely can lead to overfitting or nonphysical deformation of136

objects due to limited views and few number of updates. To regularize the update, we introduce137

Gk as the group displacement for each object k. We also introduce an individual displacement δi138

for each Gaussian gi to account for rotations and non-rigid transforms such as the closing of the139

robot gripper. At a step t, Gk is initialized with the value obtained at step t − 1 to carry over some140

momentum, and δi is initialized with zeros.141

Finally, an essential modification is made for background Gaussians (labeled li = 0), which are kept142

fixed during optimization. This constraint is instrumental in preventing the model from overfitting by143

relocating background Gaussians to improperly occlude or merge with foreground objects. It ensures144

that the background remains stable and consistent across updates, thereby focusing the optimization145
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process on accurately capturing and tracking the movement and deformation of objects within the146

scene. We summarize the pipeline in Algorithm 1. Our method achieves update rates of up to 30Hz,147

aligning with the dynamic needs of robotic operations.148

Algorithm 1 Dynamic Gaussian Splatting for Real-time Robotics

Require: nstep = 3
for time step t do

Set δi := 0 for each Gaussian i where li 6= 0
Receive camera views Vt = {(Ic,t, Ec,t,Kc)}
if t = 0 then

S0, K := Initialize(Vt)
Set Gk := 0 for each object k

else
for step in nstep do

xi,t := xi,t−1 +Gk + δi for li = k, for k ∈ {1, . . . ,K}
Render Irenderc and compute loss Lc
Perform gradient updates: Gk := Gk − α0∇Gk

Lc, δi := δi − α1∇δiLc
end for

end if
end for

3 3D-Aware Manipulation149

To demonstrate the usefulness of our representation, we propose two straightforward yet effective150

applications of our representation to robotic manipulation. First, we show how to achieve view-151

robustness for image-based visuomotor policies. Second, we applies our representation to enable152

grasping of moving unseen objects conditioned on open-vocabulary language queries.153

3.1 View-Robust Visuomotor Policy Learning via GSMimic154

Consider a visuomotor policy which takes as inputs RGB images from a set of cameras. The problem155

of view-robustness arises if the training viewpoints are fixed to a coordinate frame, for example, the156

world frame or the end-effector frame. If the cameras are mounted differently during training time,157

the changes in input observation create a distribution shift that leads to significant performance158

drop. This issue cannot easily be handled during training without additional training cameras. With159

object-centric Gaussian representation, we can circumvent this issue with the additional depth input.160

During test-time, we can render via our 3D scene representation to get pseudo observations from the161

same viewpoints as training time. One of the complications is that due to limited field-of-view, test-162

time viewpoints will not fully cover the training viewpoints, creating empty areas in the rendering.163

To fix this, we directly train with renderings of foreground Gaussians only by removing Gaussians164

with label li = 0 during rendering. We specifically evaluate this strategy on visuomotor policies165

trained via behavior cloning, and term the overall approach GSMimic.166

3.2 Language-Conditioned Dynamic Grasping167

Our representation is readily applicable to zero-shot language-conditioned dynamic grasping. In168

this setting, a user issues a language query for the robot to grasp a specified object without prior169

demonstrations. The task is complicated by the possibility that the target object may be moving,170

requiring the agent to adapt dynamically. At the initialization stage, we extract a language-aligned171

feature fk for each object k with CLIP [7]. Then, at query time, we use CLIP to extract an embedding172

fq for the query, and the query is matched with the objects in the scene based on cosine distance:173

kq = argmax
k∈{1,...,K}

fk · fq
||fk|| · ||q||

With the benefit of explicity 3D representation, at time step t, we are able to extract the point-cloud174

of the target object Pq by collecting the centers of Gaussians marked by li = kq . The point-175

cloud forms the basis for determining a viable grasp, parameterized by a pose Tt. In particular,176
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we randomly sample grasp poses near the point-cloud Pq and take the grasp with the maximal177

antipodal score. A motion planner is then used to direct the robot to the pose specified by Tt. Both178

the semantics, dynamics, and 3D aspects are crucial for the sucess of the task.179

4 Evaluation180

4.1 View-Robust Behavior Cloning181

In our experimental evaluation, we seek to investigate the generalization ability of GSMimic to182

unseen camera viewpoints during test time.183

Simulation Evaluation. We used Robomimic [17], a large-scale robotic manipulation benchmark184

as our simulation testbed. We evaluated on the 4 single-arm Franka tasks from the benchmark: Lift,185

Can, Square, and Tool Hang. We used proficient human teleoperated demonstration dataset for each186

task, and use the RGB-D observation from the default “agentview” camera for the training.187

Real-world Evaluation. We designed 2 tasks for real world validation on a Franka Panda Robot.188

(1) Cup Stacking requires the robot to pick up one of the cups on the table and place it into the189

other cup. (2) Cup Unstacking requires the robot to grasp the thin edge of the top cup, place it on190

the table, and then push it forward to roughly align with the other cup. Both tasks use Cartesian191

velocity control as the control space, and a proprioceptive inputs and a single front camera view as192

the observation space. We collect 50 tele-op demonstrations per task with a meta quest controller.193

Algorithm Comparisons. We evaluated two prior methods for behavior cloning, the diffusion pol-194

icy [3] as the image-based baseline, and 3D Diffusion policy (DP3) [4], which is recently proposed195

method that takes as inputs point-clouds. These methods demonstrate great performance in their re-196

spective input modalities. For our simulation tasks, we also evaluated an ablated version of method197

which we will refer to as GSFix. Instead of rendering from the foreground Gaussians, GSFix di-198

rectly renders from all of the Gaussians. For both GSFix and GSMimic, we use diffusion policy199

with the only difference being inputs to the model.200

Evaluation Protocol. For each task, we evaluated on 4 viewpoints of increasing difficulties: train201

view, close view (C), zoom out view (Z), and side view (S). In each view, we ensure that the objects202

of interest are still in sight. Please refer to the Appendix for a visualization of the views for each203

task. We reported success rate of each task evaluated at 100 and 10 different starting configurations204

for simulation and real-world tasks, respectively.205

4.1.1 Experimental Results206

We summarized our evaluation results for simulation tasks in Table 1 and real-world tasks Table 2.207

3D Understanding of the Scene is Critical for View Robustness. As seen in the results, even208

though diffusion policy achieves great performance given observations from the training views,209

the success rate drops significantly even for the close view, a small perturbation to the training210

view, while the policy completely fails when the views are shifting farther away. The effect is even211

more drastic for more high-precision tasks like Tool Hang and Cup Unstacking (which requires the212

gripper to grasp on a thin edge). On the other hand, GSMimic achieves comparable performance at213

training views, while maintaining a reasonable performance across all testing views, demonstrating214

the importance of our dynamic 3D representation.215

Learning with 2D Inputs Improves Task Performance. Similar to GSMimic, DP3 maintains a216

reasonable performance across different testing viewpoint. However, the task performance is in gen-217

eral considerably lower than the image-based models, especially for more complicated tasks. This218

highlights the current gap between learning directly from RGB inputs versus 3D representations,219

and the gap is likely to remain due to the abundance of 2D data and models. While on the other220

hand, our 3D representation has the flexibility to transform into 2D inputs, thus can better leverage221

rich semantics and achieve better task performance.222

Rendering with Foreground Only is Crucial to Avoid Distribution Shift. If we directly render223

the Gaussians to obtain RGB inputs for training and testing as in GSFix, the task performance is224

still superior compared to diffusion policy (DP) at close views. However, at harder test views, the225

empty areas in the rendering due to limited field-of-view cause significant distribution shift, so that226
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Table 1: Evaluation of Simulation Tasks Given Different Testing Viewpoints. We present success rates of
tasks with 100 different initial conditions under the train view and three test views: close view (C), zoom out
view (Z), zoom out and side view (S).

Lift Can Square Tool Hang

Train Test Views Train Test Views Train Test Views Train Test Views

C Z S C Z S C Z S C Z S

DP 0.98 0.47 0.0 0.0 0.93 0.34 0.0 0.0 0.82 0.23 0.0 0.0 0.64 0.12 0.0 0.0
DP3 0.95 0.95 0.92 0.83 0.58 0.59 0.48 0.42 0.62 0.61 0.59 0.54 0.14 0.12 0.11 0.08

GSFix 0.98 0.85 0.80 0.07 0.91 0.87 0.67 0.03 0.80 0.23 0.00 0.00 0.60 0.15 0.00 0.0

GSMimic 0.98 0.97 0.94 0.90 0.92 0.94 0.93 0.85 0.81 0.78 0.77 0.72 0.62 0.60 0.58 0.52

Table 2: Evaluation of Real-World Tasks Given Different Testing Viewpoints. We present success rates of
two real-world tasks with 10 different initial conditions, similarly from the training view and 3 test views.

Stack Cups Unstack Cups

train close zoom out side train close zoom out side

DP 9/10 3/10 0/10 0/10 8/10 1/10 0/10 0/10
DP3 5/10 4/10 4/10 4/10 2/10 1/10 2/10 1/10

GSMimic 8/10 9/10 8/10 6/10 8/10 8/10 7/10 5/10

GSFix similarly fails. In fact, at harder testing views like side, occlusions still cause performance227

drops for GSMimic. This suggests possible augmentations to further handle distribution shifts in228

input observation for our future works.229

4.2 Language-conditioned Dynamic Grasping230

Evaluation Setup. We evaluated our method on language-conditioned dynamic grasping on two231

sets of five objects from a dining and a tool scene, as shown in Fig. 4. We first experiment on232

static grasping as a baseline. Then in the dynamic setting, we randomly move around the target233

objects when the robot is in action. For each object and setting, we repeats for 5 trials. As a234

baseline comparison, we remove object-centric updates, and directly optimize for the position of235

each Gaussian between updates (Object-Blind).236

Evaluation Results. The results is presented in Table 3. From the results on static setting, we show237

that a semantic 3D representation is powerful, achieving a 86% success rate without demonstrations238

or other prior information. More importantly, our method still achieves a 72% success rate when239

objects are moving. This is only possible due to the dynamic aspect of our representation. We also240

show that our object-centric formulation is crucial, as the Object-Blind ablation completely fails to241

model object movements, making it impractical for dynamic scenes.242

5 Related Work243

Neural Dynamic Scene Representation. A pivotal advancement in neural volumetric scene rep-244

resentations was the introduction of Neural Radiance Fields (NeRF) [18], enabling high-quality245

renderings at novel views, which comes at the cost of prolonged training times. The recent develop-246

ment of 3D Gaussian Splatting (3D-GS) introduces a significant paradigm shift [1]. Unlike NeRF’s247

implicit representation, 3D-GS utilizes explicit 3D Gaussian primitives, enabling scene representa-248

tion, enabling fast, parallelizable rendering through rasterization. The explicit nature of 3D-GS, as249

opposed to the implicit form found in NeRF, has the potential for immediate updates in response250

to changes within the scene, making it particularly suited for dynamic environments. 3D-GS also251

led to several recent works that leverage the representation for offline dynamic scene reconstruction.252

The approaches include explicit parametrization of Gaussian parameters at different time steps and253

the modeling of a deformation field for Gaussians [19, 20, 21], which achieve high quality and fast254

rendering. These works highlight the potential for accurately capturing and rendering complex, dy-255

namic scenes in real time. Nevertheless, they all require extensive viewpoints and offline training,256

while we aim at online updates with limited viewpoints for robotics applications.257
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Table 3: Evaluation of Language-conditioned Dynamic Grasping
Dining Tools Total

Green
Bowl

White
Bowl Carrot Snack Spoon Brush Clamp Screw

driver Tape Mouse

Static 5/5 5/5 5/5 4/5 4/5 5/5 3/5 4/5 4/5 4/5 43/50

Object-Blind 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/50
Ours 4/5 5/5 5/5 3/5 3/5 4/5 2/5 3/5 3/5 4/5 36/50

TapeGreen Bowl

Figure 4: Language-conditioned Dynamic Grasping Task setup

3D Neural Representation for Robotic Manipulation. In the exploration of 3D representations258

for robotic manipulation, diverse approaches have leveraged neural fields [22, 23, 24, 25]. Among259

these, Neural Descriptor Fields stand out for constructing neural feature fields that generalize across260

different instances with minimal demonstrations, yet focus primarily on geometric rather than se-261

mantic features, limiting cross-category generalization [26]. Recent efforts have distilled neural fea-262

ture fields using foundation models like CLIP [7] and DINO [6, 9] for supervision. Techniques such263

as F3RM [13] and LERF-TOGO [11, 12] have distilled neural feature fields to facilitate language-264

conditioned and task-oriented grasping, demonstrating the potential of foundation models in en-265

hancing robotic manipulation. Despite these advancements, such methods often require dense cam-266

era views for training and retraining for new scenes, constraining their utility in dynamic settings.267

GNFactor attempts to address this by introducing a voxel encoder [27], yet the challenge of dense268

view dependency remains. Recently, D3Fields proposed a dynamic and semantic 3D representation269

through 3D fusion, aiming for real-time updates with limited viewpoints [14]. However, D3Fields270

requires feature extraction at every time step, increasing computational demands and complicat-271

ing high-frequency reconstruction, highlighting a critical area for improvement in dynamic scene272

representation for robotic manipulation.273

View-Generalization for Visuomotor Policies. In the field of robot learning, a primary challenge274

has been training models on limited views and achieving generalization to unseen views. Despite275

extensive efforts, such as those seen in the RoboNet [28] which amassed large-scale video datasets276

of various manipulation tasks, models pre-trained on these datasets still show poor performance,277

with success rates often below 20% on unseen camera viewpoints. Previous approaches to tackle this278

problem often extensive samples in simulation environments [29, 30], additional training viewpoints279

to create view-agnostic representations [31, 32, 33], or requires less scalable task-related inductive280

bias [34, 35]. Our simpler solution to the problem is to incorporate additional depth information281

and construct semantic and dynamic 3D representations allowing for effective projection back to282

training views, thus enhancing view generalization capabilities.283

6 Discussion and Limitations284

In this work, we propose to leverage 3D Gaussians as a semantic and dynamic 3D representation285

for robotics. We achieve a high update rate of 30 Hz with object-centric initialization and updates,286

which is sufficient for most robotic tasks. We demonstrate the practicality of our representation287

for training view-robust behavior cloning policies via GSMimic and language-conditioned dynamic288

grasping. However, a key limitation of our method is that in its current form, it does not introduce289

new Gaussians to represent possible new objects, which is crucial for extending the representation290

to open-world manipulation. We believe that with this extension, our proposed representation has291

the potential to apply to a wide range of in-the-wild robotic applications.292
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1 Evaluation of Reconstruction Quality1

Dataset and Metrics. Even though reconstruction quality is not the most important objective of our2

method, we present here some evaluation on the reconstruction quality. We make use of the data3

obtained through our teleoperated demonstrations. For all the data, we reconstruct the scenes with4

a training view and hold out an additional test view. For the metrics, we adopt the conventional5

reconstruction metrics: SSIM, PSNR, and LPIPS [1, 2]. To better present the metrics, we show6

the metrics at the initialization, and the percentage changes in the metrics in the following dynamic7

updates.8

However, these are all global metrics that can be dominated by background reconstruction quality9

and thus overlook object movements in the dynamic scene, which is the main objective for robotic10

tasks. Thus, we also propose to use chamfer distance between the reconstructed foreground point-11

cloud P and the ground truth foreground point-cloud Pgt.12

CD(P,Pgt) =
∑
x∈P

min
y∈Pgt

||x− y||22 +
∑

y∈Pgt

min
x∈P
||x− y||22

We extract P by selecting the Gaussian centers xi where li 6= 0. We run the full static Gaus-13

sian splatting algorithm, which takes much longer than our online reconstruction, to reconstruct the14

pseudo ground truth foreground point-cloud Pgt.15

Alternative Methods and Ablation. We compare our method with Dynamic 3D Gaussians16

(Dynamic-GS) [3], which directly optimizes the centers of each 3D Gaussian greedily. Even though17

the method is proposed for offline training, it is directly applicable to the online setting. We evaluate18

two variants of the method with different training steps per update, resulting in 1 Hz and 30 Hz19

update rates, respectively.20

Necessity of Object-centric Updates. As shown in the evaluate results teleoperated dataset pre-21

sented in Tab. 1, object-centric updates are crucial to represent robot arm and gripper movements22

in the scene. Without object-centric updates, with limited time budget, Dynamic-GS falls to a local23

minimum where the moving robot arm and object collapse to a single point. Only at 30x slower24

update rate, Dynamic-GS is able to faithfully reconstruct the movements.25

Table 1: Quantitative Evaluation of Scenes from Teleoperated Demonstrations

FPS Last Frame Average Frame

SSIM ↑ PSNR ↑ LPIPS ↓ CD ↓ SSIM ↑ PSNR ↑ LPIPS ↓ CD ↓
First Frame - 0.8103 18.82 0.3528 0 0.8103 18.82 0.3528 0

Dynamic-GS (1Hz) 1 -6.87% -9.51% 7.00% 0.008 -4.69% -6.59% 4.42% 0.016

Dynamic-GS 30 -7.37% -17.53% 16.50% 0.090 -4.66% -11.96% 8.87% 0.045
Ours 30 -7.03% -9.40% 8.99% 0.012 -4.12% -5.53% 4.73% 0.017
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2 Visualization of Evaluation Views for View-Robust Behavior Cloning26

We visualize the evaluation viewpoints for the view-robust behavior cloning tasks in Fig. 1 below.27

Train View Close View (Test) Zoom-out View (Test) Side View (Test)

Lift

Can

Square

Tool Hang

Figure 1: Evaluation views for view-robust behavior cloning.
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